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Abstract

Ip

We present an initial and elementary investigation of the formal

specification and mechanical verification of programs that interact with

environments. We describe a formal, mechanically produced proof that a

simple, real time control program keeps a vehicle on a straightline course in

a variable crosswind. To formalize the specification we define a mathematical

function which models the interaction of the program and its environment. We

then state and prove two theorems about this function: the simulated vehiclep

never gets farther than three units away from the intended course and homes to

the course if the wind ever remains steady for at least four sampling units.

Key Phrases: autopilot, formal specification, mechanical theorem-proving,

modeling, program verification, real time control, simulation.

1. Background

Formal computer program verification is a research area in computer science

aimed at aiding the production of reliable hardware and software. Formal

verification is based on the observation that the properties of a computer

program are subject to mathematical proof.

1.1. Program Verification

Consider, for example, the following FORTRAN program for computing integer

square roots using a special case of Newton's methodn

V. Kahan, of U.C. Berkeley, reports that the algorithm was in fact
advocated by Heron of Alexandria before 400 A.D.
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INTEGER FUNCTION ISQRT(I)
IF ((I .LT. 0)) STOP
IF ((I oGT. 1)) GOTO 100
ISQRT I
RETURN

100 ISQRT (I / 2)
200 IF (((I / ISQRT) .GE. ISQRT)) RETURN

ISQRT = ((ISQRT + (I / ISQRT)) I 2)
GOTO 200
END

It is possible to prove, mathematically, that the program satisfies the

following (informally stated) specification:

If the program is executed on a machine implementing ANSI FORTRAN
66 or 77 [13, 2J, and the input to the program is a nonnegative
integer representable on the host machine, then the program
terminates, causes no arithmetic overflow or other run time error, and
the output is the largest integer whose square is less than or equal
to the input.

Such program proofs are generally constructed in two steps. In the first

step, the code and its mathematical specifications are transformed into a set

of formulas to be proved. In the second step the formulas are proved using

the usual laws of logic, algebra, number theory, etc. For an introduction to

program verification, see [9, 10, 11, 1].

Because the mathematics involved in program verification is often tedious

and elementary, mechanical program verification systems have been developed.

One such system is described in [6]. That system handles a subset of ANSI

FORTRAN 66 and 77 and has verified the above mentioned square root

program [7], among others.

To admit mechanical proof, the specifications must be written in a

completely formal notation. For example, in the square root example the

specification of the program's output is:

2< i < (j+1) 2 & 0 < j,

where it is understood that i refers to the value of the FORTRAN variable I on

I Z.........±



input to ISQRT and j refers to the value returned by ISQRT.

1.2. Boebert's Challenge

The square root program is a good example of a programming task in which

the specification "obviously" captures the intent of the designer. At issue

is whether some algorithm satisfies the specification. However, for some

programming tasks it is difficult to find mathematical specifications that

obviously capture the designer's intention. Real time control programs are an

especially important example of such tasks.

To spur the interest of the program verification research community to

consider such specification problems, a version of the following problem was

proposed by Earl BoeDert.2 Consider the t&sk of steering a vehicle down a

straightline course in a crosswind that varies with time. Let the desired

course be down the x-axis of a Cartesian plane (i.e, towards increasing values

of x). Suppose the vehicle carries a sensor that, in each sampling unit of

time, reads either +1, 0, or -1, according to whether the vehicle is to the

left of the course (y>O), on the course (y=O), or to the right of the course

(y<O). Suppose also that the vehicle has some actuator that can be used to

change the y-component of its velocity under the control of some program

reading the sensor. Problem: state formally what it means to keep the

vehicle on course and, for some particular control program, prove mechanically

that the program satisfies its high level specification.

Observe that the problem necessarily involves a specification of the

environment with which the program interacts. Furthermore, unlike the square

root example, what is desired is not merely a description of a single

input/output interchange between the environment and the program but rather

2Honeywell Systems and Research Center, 2600 Ridgway Parkway, Minneapolis,
Minnesota 55413



the effects of repeated interchanges over time.

In this paper we describe one solution to Boebert's challenge. Our mpthod

involves writing a simulator for the system in formal logic. We present our

formal simulator after explaining informally the model and control program we

will use.

2. The Informal Model

The mechanized logic into which we cast the model provides the integers and

other discrete mathematical objects but does not provide the rationals or

reals.3 Thus, we will measure all quantities, e.g., time, wind speed, vehicle

position, etc., in unspecified integral units.

We ignore the x-axis and concentrate entirely on the y-axis. For example,

we do not consider the x-component of the vehicle's velocity and we ignore any

x-component of the wind velocity. Thus, our model more accurately represents

a one-dimensional control problem, such as maintaining constant temperature in

an environment where the outside temperature varies, or maintaining constant

speed, as in an automobile's "cruise control."

We measure the wind speed, w, in terms of the number of units in the y-

direction the wind would blow a passive vehicle in one sampling unit. We

assume that from one sampling unit to the next w can change by at most one

unit. Some such assumption is required since no control mechanism can

compensate for an external agent capable of exerting arbitrarily large

instantaneous forces. Thus, we assume that the wind speed at time t+1 is the

speed at time t plus some increment, dw, that is either -1, 0, or 1.

3This is not a limitation of mechanized logic in general. Several existing
mechanical theorem-provers, e.g., those of Bledsoe's school (4, 3], and the
MAXSYhA symbolic manipulation system [12], provide analytic capability.

'. . . . . . . . . . . _ + . - ° + . -
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w(t+l) w(t) + dw(t+1)

where

dw(t+l) -1, 0, or 1.

We permit the wind to build up to arbitrarily high velocities.

At each sampling unit the control program may increment or decrement the y-

component of its velocity (e.g., by turning a rudder or firing a thruster).

We let v be the accumulated speed in the y-direction measured as the number of

units the vehicle would move in one sampling unit if there were no wind. We

make no assumption limiting how fast v may be changed by the control program;

our illustrative program changes v by at most +5 each sampling unit. We

permit v to become arbitrarily large.

The y-coordinate of the vehicle at time t+1 is thus its y-coordinate at

time t, plus the accumulated v at time t, plus the displacement due to the

wind at time t+1:

y(t+1) = y(t) + v(t) + w(t+1).

The sensor reading at any time is the sign of y, sgn(y). The control

program changes v at each sampling unit as a function of the current sensor

reading (and perhaps previous readings). Our illustrative control program is
a function of the current reading and the previously obtained reading:

v(t+1) = v(t) + deltav(senl,sen2)

where

senl sgn(y(t+1))

sen2 asgn(y(t)),

and deltav is the mathematical function specifying the output of the control

program.



.

3. The Control Program

It is instructive to consider first the control program with the following

specification:

deltav(senl,sen2) -senl

A steadily increasing wind can blow the vehicle arbitrarily far away from the

X-axis. Furthermore, should the wind ever become constant, the vehicle begins

to oscillate around the x-axis. See Figure 1.

The control program we consider includes a damping term that also causes

the vehicle to resist more strongly any initial push away from the x-axis.

deltav(senl,sen2) = -senl + 2(sen2-senl).

See Figure 2 for an illustration of the behavior of the vehicle under this

program.

The following trivial FORTRAN program implements this specification in the

following sense. If SENt is the current sensor reading, senl, and the value

of the global variable SEN2 is the previous sensor reading, sen2, and senl and

sen2 are both legal sensor readings, then at the conclusion of the subroutine,

the global ANS is set to deltav(senl,sen2) and the global SEN2 is set to senl.

SUBROUTINE DELTAV(SEN1)
INTEGER SEN1, SEN2, ANS
CONMON /DVBLK/SEN2, ANS
ANS, ((2 9 SEN2) - (3 0 SEN1))
SEN2 = SEN1
RETURN
END

Proving that the program satisfies its specification is, of course, trivial.

At issue is whether the vehicle stays on course.

By observing the behavior of the simulated vehicle under several

arbitrarily chosen wind histories we made two conjectures about the behavior

of the vehicle:

-. ..b. - - - - . - * . - - - - - - -
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1. No matter how the wind behaves (within the constraints of the
model), the vehicle never strays farther than 3 units away from the
x-axis.

2. If the wind ever becomes constant for at least 4 sampling units,
the vehicle returns to the x-axis and stays there as long as the
wind remains constant.

How can we state such specifications in a form that makes them amenable to

mechanical proof?

4. Formalizing the Model

To state the conjectures formally we must formalize the model of the

control program and its environment. We will define this model as a function

in the same mechanized mathematical logic used by the FORTRAN verification

system (6]. The logic and a mechanical theorem-prover for it are completely

described in [5].

The syntax of the logic is akin to that of Church's lambda-calculus. If f

is a function in the logic and el and e2 are two expressions in the logic,

then we write (f el e2) to denote the value of f on the two arguments el and

e2. The more traditional equivalent notation is f(el,e2). For example,

suppose ZPLUS is defined as the usual integer addition function. Then (ZPLUS

X Y) is how we write XY. Thus, (ZPLUS 3 -10) = -7.

Our formal model is expressed as a recursive function that takes two

arguments, a description of the behavior of the wind over some time period and

the initial state of the system. The value -f the function is the final state

of the system after the vehicle has travelled through the given wind under the

direction of the control program. Thus, the recursive function may be thought

4This choice of notation is convenient because most symbols used in program
specification are user-defined and do not have commonly accepted names or
symbols. Furthermore, the uniformity of the syntax makes mechanical
manipulation easier.



of as a simulation of the model.

Formally, we let states be triples, <w,y,v>, containing the current hnd

speed, y-position of the vehicle, and accumulated v. The function STATE, of

three arguments, is axiomatically defined to return such a triple, and the

functions W, Y, and V are defined to return the respective components of such

a triple. Thus, the expression (STATE 63 -2 -61) denotes a state in which the

wind speed is 63, the y-position of the vehicle is -2, and the accumulated v

is -61.

(W (STATE 63 -2 -61)) = 63
(Y (STATE 63 -2 -61)) = -2
(V (STATE 63 -2 -61)) = -61

The function NEXT.STATE is defined to return as its value the next state,

given the change in the wind and the current state. The formal definition of

NEXT.STATE is:

Definition.
(NEXT.STATE DW STATE)

(STATE (ZPLUS (W STATE) DW)
(ZPLUS (Y STATE) (V STATE) (W STATE) DW)
(ZPLUS (V STATE)

(DELTAV (SGN (ZPLUS (Y STATE)
(V STATE)
(W STATE)
DW))

(SGN (Y STATE))))).

The definition of next state follows immediately from our equations for

w(t+1), y(t+1) and v(t+1). The function DELTAV is formally defined as was

deltav in our informal model.

The behavior of the wind over n sampling units is represented as a sequence

of length n. Each element of the sequence is either -1, 0, or 1 and indicates

how the wind changes between sampling units. Formally, a sequence is either

the empty sequence, NIL, or is an ordered pair <hd,tl>, where hd is the first

element of the sequence and tl is a sequence containing the remaining

.1
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elements. Such pairs are returned by the function CONS of two arguments. The

functions HD and TL return the respective components of a nonempty sequence,

and the function EMPTYP returns true or false according to whether its

argument is an empty sequence.

In general we are not interested in wind behaviors other than those

permitted by our model. Thus, we define a function that recognizes when an

arbitrary sequence consists entirely of -l's, O's, and l's.

Definition.
(ARBITRARY.WIND LST)

(IF (EMPTY LST)T

(AND (OR (EQUAL (HD LST) -1)
(EQUAL (HD LST) 0)
(EQUAL (HD LST) 1))

(ARBITRARY.WIND (TL LST)))).

(ARBITRARY.WIND LST) returns true or false according to whether every

element of LST is either -1, 0, or 1. The definition is recursive. The empty

sequence has the property. A nonempty sequence has the property provided that

(a) the HD of the sequence is -1, 0, or 1, and (b) the TL of the sequence

(recursively) has the property.

The recursive function FINAL.STATE takes a description of the wind and an

initial state and returns the final state:

Definition.
(FINAL.STATE L STATE)

(IF (EMPTY L)
STATE
(FINAL.STATE (TL L)

(NEXT.STATE (HD L) STATE))).

. Note that FINAL.STATE is recursively defined ane may be thought of as

simulating the state changes induced by each change in the wind.

We can now state formally the two properties conjectured earlier.



10

Theorem. VEHICLE.STAYS.WITHIN.3.OF.COURSE:
(IMPLIES (AND (ARBITRARY.WIND LST)

(EQUAL STATE
(FINAL.STATE LST

(STATE 0 0 0))))
(AND (ZLESSEQP -3 (Y STATE))

(ZLESSEQP (Y STATE) 3)))

This formula may be read as follows. If LST is an arbitrary wind history and

STATE is the state of the system after the vehicle has travelled through that

wind starting from the initial state <0,0,0>, then the y-coordinate of STATE

is between -3 and 3. Put another way, regardless of how the wind behaves, the

vehicle is never farther than 3 from the x-axis.

A formal statement of the second conjecture is:

Theorem. VEHICLE.GETS.ON.COURSE.IN.STEADY.WIND:
(IMPLIES (AND (ARBITRARY.WIND LST1)

(STEADY.WIND LST2)
(ZGREATEREQP (LENGTH LST2) 4)
(EQUAL STATE

(FINAL.STATE (APPEND LST1 LST2)
(STATE 0 0 0))))

(EQUAL (Y STATE) 0))

The function STEADY.WIND recognizes sequences of 0's. The function APPEND is

defined to concatenate two sequences. The formula may be read as follows.

Suppose LSTI is an arbitrary wind history. Suppose LST2 is a history of O's

at least 4 sampling units long. Note that the concatenation of the two

histories describes an arbitrary initial wind that eventually becomes constant

for at least 4 sampling units. Let STATE be the state of the system after the

vehicle has travelled through the concatenation of those two wind histories.

Then the y-position of the vehicle in that final STATE is 0.

5. Proving the Conjectures

The foregoing conjectures can be proved mathematically. Indeed, they have

been proved by the mechanical theorem-prover described in [5]. The key to the

proof is that the state space of the vehicle can be partitioned into a small

finite number of classes. In particular, any state <w,y,v> reachable under
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the model starting from <0,0,0> can be put into one of the following classes

according to y and w+v:

y w+v

-3 1
-2 1 or 2
-1 2 or 3
0 -1, 0 or 1
1 -2 or -3
2 -1 or -2
3 -1

The automatic theorem-prover is incapable of discovering this fact for

itself. Instead, the human user of the theorem-prover may suggest it by

defining the function (GOOD.STATEP STATE) to return true or false according to

whether STATE is in one of the 13 classes above, and then commanding the

theorem-prover to prove the following key lemma:

(IMPLIES (AND (GOOD.STATEP STATE)
(OR (EQUAL DW -1)

(EQUAL DW 0)
(EQUAL DW +)))

(GOOD.STATEP (NEXT.STATE DW STATE))).

This theorem establishes that if the current state of the vehicle is one of

the "good states" and the wind changes in an acceptable fashion then the next

state is a good state. After proving this lemma (by considering the cases and

using algebraic simplification) the theorem-prover can establish by induction

on the number of sampling units that the final state of the vehicle is a good

state. From that conclusion it is immediate that the y-position of the

vehicle is within +3 of the x-axis.

The proof of the second theorem is similar. The vehicle is in a good state

after LST1 has been processed. But if the vehicle is in a good state and the

wind remains steady for four sampling units, it is easy to show by cases and

algebraic simplification that the vehicle returns to the x-axis with w+v=O.

But in this case, it stays on the x-axis as long as w stays constant.

tm
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6. Coments on the Model

We have proved that the simulated vehicle stays on course under each of the

infinite number of different wind histories to which it might be subjected

under the model.

Just as the user of a square root or sorting subroutine must look at the

specifications to determine whether the subroutine is suitable for his

application, so too should the user of this control program. In particular,

it is up to the user to determine whether the restrictions on the wind

behavior and the model of the environment are sufficiently realistic for his

application.

Here are a few of the more obvious oversimpliflcations:

- Real sensors sometimes give spurious readings due to vibration or
other forms of disturbance. The program makes no allowance for such
noise.

- No consideration is given to motion or forces in the x- or z-
directions. Furthermore, no consideration is given to the
orientation of the vehicle with respect to its preferred direction
of travel.

- The model of the physics of the vehicle is too simple. The use of
discrete measurement is unsatisfying but perhaps justifiable under
suitable assumptions about scale. But many physical aspects of real
control situations have been ignored: inertia, reaction times of
the actuators, response time of the vehicle, maximum permitted g-
forces.

Allowance for noise in the sensors can be handled by existing program

verification technology. For example, if one provides redundant sensors and

employs a signal select algorithm based on software majority voting, DELTAV

can be rewritten to use an algorithm such as that verified in [8] to compute

the majority sensor reading (if any). The proof that the vehicle stays on

course can then be carried over directly if one is willing to assume that at

each sampling unit a majority of the sensors agree.

.1
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However, the other two unrealistic aspects of our problem are more

difficult to handle. While it is easy to define more sophisticated formal

simulators it may well be practically impossible to prove interesting

properties mechanically. Certainly the proof paradigm used here, depending as

it did on the existence of a small partitioning of the state space, will not

suffice for more sophisticated models.

7. Conclusion

We have illustrated how a formal simulator can be used to specify in a

machine readable form the high level intention of a simple real time control

program. We have also shown how such a program has been mechanically proved

to satisfy its specifications.

Simulation programs are used today to test a variety of applications

programs. Among the applications that come to mind are real time control,

scheduling, and page fault handling in operating systems. Such simulators

suffer the inaccuracy introduced by finite precision arithmetic and resources

and in addition offer only the testing of the applications program on a finite

number of situations.

Formal simulators are mathematical functions. They need not be realizable

on machines and thus need not suffer resource limitations. In addition,

formal simulators theoretically permit mechanical analysis of the behavior of

the system In an infinite number of possible situations.

b.
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